Energy Efficiency Strategies for Rural Communities

Energy Efficiency Advisor Paul Hoeschen

Minnesota Rural Water Association

Water you thinking?

- Energy costs money.
- Search for energy savings and you'll find money!
- Energy Efficiency doesn't sound sexy but money gets everyone's attention.

Significant cost

 Electricity-use accounts for 25–40 percent of the operating budgets for wastewater utilities and approximately 80 percent of drinking water costs.

The power triangle

(Courtesy U.S. Dept. of Energy)

- As indicated in the illustration, as a power factor becomes lower (more kVAR) the horse is pushed further off to the side of the tracks. This causes the horse (utility generation) to work harder while still only producing the same amount of work (pulling the cart down the track).
- The low power factor causes the entire system of both generation and delivery to become inefficient.

Beer: Real, active, useful, resistive. Foam: Reactive, non-working, wasted. Demand: Total, apparent power.

Making sense of power factor: The beer analogy

Power quality, 101 Learning

Water/WW Billing. Same Power Company, Same City

Water Treatment Facility										
12 Month Billing	Bill Days	Avg Temp	Inches Precip.*	kWh	Power Factor	Total	Tot\$/kWh			
Annual Total	365		27.87	91,000		\$15,107.12				
Monthly Average	30.41667	43	2.32	7,583	79.2	\$1,258.93	\$0.167			

Wastewater Treatment Facility										
12 Month Billing	Bill Davs	Avg	Inches	k\\/h	Power	Total	Tat\$/k\M/h			
12 MONUN DIIINg	Dili Days	Temp	Precip.*		Factor					
Annual Total	365		27.87	471,743		\$41,003.74				
Monthly Average	30.4	42	2.32	39,312	0.7602	\$3,416.98	\$0.0873			

Electric Rates

- General Service Rate (water plant) includes the power factor. (\$0.167)
 16.7 cents blended cost.
- Municipal Pumping Rate (wastewater plant) does not include the power factor. (\$0.876) 8.76 cents blended cost.
- You are paying a power factor penalty if the <u>billed</u> demand is higher than the <u>metered</u> demand.
- \$15,107.12 total annual electric at the water plant.
- \$1,008.11 Power Factor Penalty
- 7% penalty. Correct the Power Factor with capacitors or variable frequency drives.

Month	Actual kW	Power Factor	Billed kW	Additional kW	Per	alty per kW	Tot	al Power Factor Penalty
October-17	0	0.00%	0	0	\$	10.71	\$	-
November-17	49	80.36%	55	6	\$	10.71	\$	64.26
December-17	49	81.32%	54	5	\$	10.71	\$	53.55
January-18	49	81.51%	54	5	\$	10.71	\$	53.55
February-18	49	82.12%	53	5	\$	10.71	\$	53.55
March-18	50	79.49%	56	7	\$	10.71	\$	74.97
April-18	50	78.17%	58	8	\$	10.71	\$	85.68
May-18	47	76.02%	56	9	\$	10.71	\$	96.39
June-18	47	76.58%	55	8	\$	15.25	\$	122.00
July-18	48	78.09%	55	7	\$	15.25	\$	106.75
August-18	48	78.01%	55	7	\$	15.25	\$	106.75
September-18	48	78.68%	55	7	\$	15.25	\$	106.75
			11 Month Pov	ver Factor Pen	alty:		\$	924.20
Power Factor Targe	et: 90%		Annuallized I	Power Factor I	Penalt	y:	\$	1,008.22

🕗 Xcel Energy

The demand charge is applied to each month's billing kW, which is the maximum 15-minutes average actual kW demand measured during the billing month, rounded to the nearest whole number. Billing demand is adjusted upward if the power factor shown onthe bill is below 90 percent, by dividing actual kW by the power factor and multiplying by 90 percent.

Measured Demand=23. Billed Demand=27. Assume 23 gallons of gasoline pumped while paying for 27 gallons!

Service Charge	12.00
Demand Charge 27 kW @ \$6.50	175.50
Energy Charge 12,650.496 kWh @ \$0.06054	765.86
Resource Adjustment	369.45
Interim Rate Adjustment 14.23%	184.61
Low-Income Affordability Program Surcharge	1.55
Renewable Adjustment 12,650.496 kWh @ \$0.00178	22.52
Transmission Adjustment 12,650.496 kWh @ \$0.00318	40.23
Solar Energy Adjustment 12,650.496 kWh @ \$-0.00006	-0.76
Solar Renewable Adjustment 12,650.496 kWh @ \$0.00155	19.61
Total charge this period	1,590.57

Power Factor 76.8523

Rate Comparison: Four 200 HP air blowers

		12 month total	\$ Savings	% Savings
Rate 871	Existing rate	\$282,906.67		
Rate 603	LSG Secondary	\$258,862.93	\$24,043.74	8.5
Rate 611	Time of Day	\$252,171.71	\$30,734.96	10.9
Rate 708	Time of Use	\$251,080.13	\$31 <i>,</i> 826.54	11.3

Rate 871	Existing rate	\$282,906.67
Rate 708	Time of Use	\$251,080.13
	Annual Savings	\$31,826.54

Affinity Laws for variable frequency drives.

• Cube Law Explained

- The power is proportional to the speed cubed. Since it is the power that costs the money the graph shows what it looks like in practice.
- And the sums look like this for slowing down a pump by 20% 80% speed cubed, .8x.8x.8.= .51

"Cube Law Explained" was copied from Inverter Drive Systems LTD. https://www.inverterdrivesystems.com/cube-law/

Pumps have a defined operating range

Figure 1: Barringer-Nelson curves show reliability impact of operation away from BEP (Courtesy of Paul Barringer, <u>www.barringer1.com</u>)

Old pump with 30HP low efficiency motor.

New pump with high-efficiency 20HP motor

Weinman[®]-Deming[®] split case pumps meet design criteria of ASTM, HI, ANSI AISI, SAE and ASME.

Pump curve and system curve

Pump curve plotted: 215gpm, 350gpm, 365gpm

VFD Adjustments 30% Energy Savings

				Volts	Output			
		Hertz	Amps	DC	voltage	GPM	PSI	
6/13/2019	Old pump	46.8	74	323	181	350	57.4	4.7 gallons per amp
6/9/2020	New pump	47.5	44.5	319	184	215	57.2	4.8 gallons per amp
9/14/2020	New pump	49.3	52.8	320	196	364	57.7	6.9 gallons per amp

City of Happy Place			W	W Treatment Facility				
			Output				Discharge	Gallons
Equip	Date	Amps	voltage	Hertz	KW	GPM	PSI	per KW
								GPM/KW
								#DIV/0!
								#DIV/0!
								#DIV/0!

Water plant

Edge of pump curve, 60 hertz required

VFD and Valve adjustments. 30% savings.

Decreased pressure creates energy savings. VFDs ordered.

Equipmen	t ID:		GPM/KW		
					GPM per
Date	Hertz	Valve position	GPM	KW	KW
5/23/2022	60	throttled	189	10.687	17.7
5/23/2022	60	Open	342	12.631	27.1
			44.7%	15.4%	34.7%

Equipmen	t ID:		GPM/KW		
Data	llorta	Value position			GPM per
Date	Hertz	valve position	GPIVI	KVV	KVV
5/23/2022	60	throttled	187	10.46	17.9
5/23/2022	60	Open	335	12.12	27.6
			44.2%	13.7%	35.1%

VFDs and Sheaves

ABB drive, 30 HP air blower.

Sheave size is critical on belt-driven equipment

- 60 hertz = 113.1 amps.
- 45 hertz = 101 amps.
- 40 hertz = 100 amps.
- 35 hertz = 103 amps.
- The 40HP motor has 9.2" sheave, blower had a 9.75" sheave. 1,765 motor rpm x 9.2 / 9.75 = 1,665 blower rpm. New blower sheave = 12": 1,765 motor rpm x 9.2 / 12 = 1,353 blower rpm at 60 HZ.

Follow-up Assessment

- Initial assessment: Increase the blower sheave size on the aeration blower. Install a VFD on the digester air blower.
- Follow-up assessment: Digester blower operating at 35 hertz. Determined that sheaves need to be changed on the digester blower.
 33.7% Savings

	Pre	Post	
	Assessment	Assessment	Savings
Total Energy Consumption (kWh)	443320	294130	149190
Current energy rate (\$)	0.089164	0.089164	0
Total Energy Costs (\$)	\$39,528.18	\$26,225.83	\$13,302.36

Air blower specifications

- Must always operate between the minimum and maximum speed.
- Program the minimum speed into the VFD.
- Air flow must be enough for cooling.
- Speed must be fast enough to splash enough oil for lubrication.

15 HP air blower

VFD Savings on Air Blowers, 29% Plant Savings. 2 year ROI.

	2018	Waste	water Trea	tment Fa	cility	
Billing From	Billing To	Bill Days	kWh	Power Factor	Total	Tot\$/kWh
6/10/2018	7/10/2018	30	9,240	78.4	\$890.17	\$0.0963
7/10/2018	8/10/2018	31	9,480	78.7	\$914.88	\$0.0965
8/10/2018	9/10/2018	31	9,480	80.6	\$922.02	\$0.0973
3 month	Total	92	28,200		\$2,727.07	
Monthly A	31	9,400	79.2	\$909.02	\$0.0967	
	2020	Wastev	water Trea	tment Fa	cility	
Billing From	Billing To	Bill Days	kWh	Power Factor	Total	Tot\$/kWh
6/10/2020	7/10/2020	30	6,480	87.4	\$637.18	\$0.0983
7/10/2020	8/10/2020	31	6,840	87.2	\$693.65	\$0.1014
8/10/2020	9/10/2020	31	6,720	86.8	\$630.88	\$0.0939
3 month	Total	92	20,040		\$1,961.71	
Monthly A	Average	31	6.680	87.1	\$653.90	\$0.0979

VFD, 15 HP submersible well.

55% reduction, Grove City, MN. Installed VFD, opened valve.

Follow up assessment			
	Pre Assessment	Post Assessment	Savings
Total Energy Consumption (kWh)	77,787.47	34,871.76	42,915.71
Current energy rate (\$)	0.11879	0.11879	0
Total Energy Costs (\$)	\$9,240.37	\$4,142.42	\$5 <i>,</i> 097.96

Oxidation Ditch facility

Project Item	Recommended Energy Conservation Measure Description	Annual Energy Savings (kWh)	Annual Cost Savings (\$)	Estimated Cost of Improvement (\$)	Rebate Total (\$)	Payback (Years)	Ref Pages
Wastewater Plant	Reduce the water level in the ditches and reduce the ramp speed on the VFDs for the brush rotors.	55,123	\$5,142.96	\$0.00	\$0.00	0.00	<mark>5-6</mark>
Chemical cost	Improve Bio-Phosphorus removal with anoxic zones	0	\$4,289.00	\$0.00	\$0.00	0.00	7
Effluent blower	Use the start/stop function and open the discharge valves	16466	\$1,536.30	\$0.00	\$0.00	0.00	7
	Totals	71589	\$10,968.26	\$0.00			

Efficient travel

Questions?

- Paul Hoeschen
- Energy Efficiency Advisor
- Minnesota Rural Water Association
- paul.hoeschen@mrwa.com
- Cell phone: 218-820-0479